Dorsal activity of maternal squint is mediated by a non-coding function of the RNA.

نویسندگان

  • Shimin Lim
  • Pooja Kumari
  • Patrick Gilligan
  • Helen Ngoc Bao Quach
  • Sinnakaruppan Mathavan
  • Karuna Sampath
چکیده

Despite extensive study, the earliest steps of vertebrate axis formation are only beginning to be elucidated. We previously showed that asymmetric localization of maternal transcripts of the conserved zebrafish TGFβ factor Squint (Sqt) in 4-cell stage embryos predicts dorsal, preceding nuclear accumulation of β-catenin. Cell ablations and antisense oligonucleotides that deplete Sqt lead to dorsal deficiencies, suggesting that localized maternal sqt functions in dorsal specification. However, based upon analysis of sqt and Nodal signaling mutants, the function and mechanism of maternal sqt was debated. Here, we show that sqt RNA may function independently of Sqt protein in dorsal specification. sqt insertion mutants express localized maternal sqt RNA. Overexpression of mutant/non-coding sqt RNA and, particularly, the sqt 3'UTR, leads to ectopic nuclear β-catenin accumulation and expands dorsal gene expression. Dorsal activity of sqt RNA requires Wnt/β-catenin but not Oep-dependent Nodal signaling. Unexpectedly, sqt ATG morpholinos block both sqt RNA localization and translation and abolish nuclear β-catenin, providing a mechanism for the loss of dorsal identity in sqt morphants and placing maternal sqt RNA upstream of β-catenin. The loss of early dorsal gene expression can be rescued by the sqt 3'UTR. Our findings identify new non-coding functions for the Nodal genes and support a model wherein sqt RNA acts as a scaffold to bind and deliver/sequester maternal factors to future embryonic dorsal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF signaling is required for {beta}-catenin-mediated induction of the zebrafish organizer.

We have used the maternal effect mutant ichabod, which is deficient in maternal beta-catenin signaling, to test for the epistatic relationship between beta-catenin activation, FGF signaling and bozozok, squint and chordin expression. Injection of beta-catenin RNA into ichabod embryos can completely rescue normal development. By contrast, when FGF signaling is inhibited, beta-catenin did not ind...

متن کامل

Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish.

We have identified and characterized a zebrafish recessive maternal effect mutant, ichabod, that results in severe anterior and dorsal defects during early development. The ichabod mutation is almost completely penetrant, but exhibits variable expressivity. All mutant embryos fail to form a normal embryonic shield; most fail to form a head and notochord and have excessive development of ventral...

متن کامل

Lentiviral Mediated Expression of Soluble Neuropilin 1 Inhibits Semaphorin 3A-mediated Collapse Activity in Vitro

Introduction: Semaphorin 3A (Sema 3A) is a secreted protein, which plays an integral part in developing the nervous system. It has collapse activity on the growth cone of dorsal root ganglia. After the development of the nervous system, Sema 3A expression decreases. Neuropilin 1 is a membrane receptor of Sema 3A. When semaphorin binds to neuropilin 1, the recruitment of oligodendrocyte precurso...

متن کامل

Evaluation of Placentalmir-155-5p and Long Non-coding RNA sONE Expression in Patients with Severe Pre-eclampsia

It has been well documented that preeclampsia (PE) has a common etiological background, but little is known about its linkage at the molecular level.Non- coding RNAs are critical posttranscriptional regulators ofgene expression.  This study was performed to determine whether PEis associated with alterations in placental non-codingRNAs expression. MicroRNA(miR)-155-5p and long non-coding RN...

متن کامل

04-P006 Dorsal axis formation by maternal zebrafish squint is mediated by a non-coding function of the RNA

ences between placodes and neural crest (induction during different times of development; different developmental potential; regulation of differentiation and migration by largely nonoverlapping sets of transcription factors) this suggests that cranial placodes and neural crest cells have an independent developmental origin from non-neural and neural ectoderm, respectively. We currently perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 139 16  شماره 

صفحات  -

تاریخ انتشار 2012